Layer-separated MoS2 bearing reduced graphene oxide formed by an in situ intercalation-cum-anchoring route mediated by Co(OH)2 as a Pt-free electrocatalyst for oxygen reduction.
نویسندگان
چکیده
A significant improvement in the electrochemical oxygen reduction reaction (ORR) activity of molybdenum sulphide (MoS2) could be accomplished by its layer separated dispersion on graphene mediated by cobalt hydroxide (Co(OH)2) through a hydrothermal process (Co(OH)2-MoS2/rGO). The activity makeover in this case is found to be originated from a controlled interplay of the favourable modulations achieved in terms of electrical conductivity, more exposure of the edge planes of MoS2 and a promotional role played by the coexistence of Co(OH)2 in the proximity of MoS2. Co(OH)2-MoS2/rGO displays an oxygen reduction onset potential of 0.855 V and a half wave potential (E1/2) of 0.731 V vs. RHE in 0.1 M KOH solution, which are much higher than those of the corresponding values (0.708 and 0.349 V, respectively) displayed by the as synthesized pristine MoS2 (P-MoS2) under identical experimental conditions. The Tafel slope corresponding to oxygen reduction for Co(OH)2-MoS2/rGO is estimated to be 63 mV dec(-1) compared to 68 mV dec(-1) displayed by the state-of-the-art Pt/C catalyst. The estimated number of electrons transferred during oxygen reduction for Co(OH)2-MoS2/rGO is in the range of 3.2-3.6 in the potential range of 0.77 V to 0.07 V, which again stands out as valid evidence on the much favourable mode of oxygen reduction accomplished by the system compared to its pristine counterpart. Overall, the present study, thus, demonstrates a viable strategy of tackling the inherent limitations, such as low electrical conductivity and limited access to the active sites, faced by the layered structures like MoS2 to position them among the group of potential Pt-free electrocatalysts for oxygen reduction.
منابع مشابه
High Pt Loading on Polydopamine Functionalized Graphene as a High Performance Cathode Electrocatalyst for Proton Exchange Membrane Fuel Cells
Morphology and size of platinum nanoparticles are a crucial factor in improving their catalytic activity and stability. Here, we firstly report the synthesis of high loading Pt nanoparticles on polydopamine reduced Graphene. The loading concentration of Pt (nanoparticles) NPs on Graphene can be adjusted in the range of 60-70%.With the insertion of polydopamine between Graphene oxide sheets, sta...
متن کاملSynthesis of Supported Pt Alloy three Dimensional Rhombus Shapes Nanoparticles for Oxygen Reduction Reaction
In this study PtFeCo ternary alloys nanoparticles of three dimentional (3D) rhombus shapes dispersed on graphene nanosheets (PtFeCo/Gr) were successfully prepared and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. A combination of analytical techniques including powder X-ray diffraction, X-ray photoelectron spectra, inductively coupled plasma-...
متن کاملElectrodeposition of platinum nanoparticles on reduced graphene oxide as an efficient catalyst for oxygen reduction reaction
Reduced graphene oxide film was synthesized on a glassy carbon electrode by electro reduction of graphene oxide powders in aqueous solution. Then platinum nano particles were deposited on reduced graphene oxide film that was deposited on the glassy carbon electrode via electro reduction of platinum salt. The Physical morphology of the platinum on reduced graphene oxide film was evaluated by sca...
متن کاملOne –step synthesis of PdCo alloy nanoparticles decorated on reduced grahene oxide as an Electro-catalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells
We report a Pd-Co (3:1)/graphene oxide (Pd3Co /GO) catalyst through a one-step strategy. GO is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Controllable GO-supported Pd3Co electrocatalystis then was reduced by ethylene glycol as a stabilizing agent to prepare highly dispersed PdCo nanoparticles on carbon graphene oxide to be used as oxygen reduct...
متن کاملCore-Shell Co/CoO Integrated on 3D Nitrogen Doped Reduced Graphene Oxide Aerogel as an Enhanced Electrocatalyst for the Oxygen Reduction Reaction
Here, we demonstrate that Cobalt/cobalt oxide core-shell nanoparticles integrated on nitrogen-doped (N-doped) three-dimensional reduced graphene oxide aerogel-based architecture (Co/CoO-NGA) were synthesized through a facile hydrothermal method followed by annealing treatment. The unique endurable porous structure could provide sufficient mass transfer channels and ample active sites on Co/CoO-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 40 شماره
صفحات -
تاریخ انتشار 2015